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Abstract Diminished ovarian reserve (DOR) is one of the

reasons for infertility that not only affects both older and

young women. Ovarian reserve assessment can be used as a

new prognostic tool for infertility treatment decision

making. Here, up- and down-regulated gene expression

profiles of granulosa cells were analysed to generate a

putative interaction map of the involved genes. In addition,

gene ontology (GO) analysis was used to get insight intol

the biological processes and molecular functions of

involved proteins in DOR. Eleven up-regulated genes and

nine down-regulated genes were identified and assessed by

constructing interaction networks based on their biological

processes. PTGS2, CTGF, LHCGR, CITED, SOCS2,

STAR and FSTL3 were the key nodes in the up-regulated

networks, while the IGF2, AMH, GREM, and FOXC1

proteins were key in the down-regulated networks.

MIRN101-1, MIRN153-1 and MIRN194-1 inhibited the

expression of SOCS2, while CSH1 and BMP2 positively

regulated IGF1 and IGF2. Ossification, ovarian follicle

development, vasculogenesis, sequence-specific DNA

binding transcription factor activity, and golgi apparatus

are the major differential groups between up-regulated and

down-regulated genes in DOR. Meta-analysis of publicly

available transcriptomic data highlighted the high coex-

pression of CTGF, connective tissue growth factor, with

the other key regulators of DOR. CTGF is involved in

organ senescence and focal adhesion pathway according to

GO analysis. These findings provide a comprehensive

system biology based insight into the aetiology of DOR

through network and gene ontology analyses.

Keywords Diminished ovarian reserve � Granulosa cells �
Biological processes � Molecular functions � Interaction
network

Introduction

Infertility is a prevalent disorder worldwide affecting

15–20 % of couples at the reproductive age [29]. Although

infertility treatments have been improved through assisted

reproductive technology (ART) over the past 30 years, the

molecular reasons of infertility have not been fully iden-

tified [31].
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Women who respond well to fertility treatments are

defined as having normal ovarian reserve (NOR). Ovarian

reserve (OR) refers to the number and quality of the eggs

that are produced by the ovaries in the follicular phase of

the menstrual cycle and the eggs that are produced in the

ovaries following injection of follicle stimulating hormone

(FSH) for infertility treatment.

One of the challenging reasons for infertility is diminished

ovarian reserve (DOR). This term refers to a clinical condi-

tion in which the ovary does not have as many oocytes as

would be estimated using the woman’s age. The aetiology is

currently unknown, and no new treatment is available aside

from the present standard fertility treatment. Furthermore,

there is no unique screening test for young patients [31, 35].

Bidirectional paracrine oocyte-granulosa cell communica-

tion is necessary for normal follicular growth and oocyte

development [22]. The maturation, development and quality

of oocytes are provided through cumulus cells by growth

factors, paracrine signals, secondary messenger and nutrient

exchanges [3, 5, 17, 22, 37, 41]. In addition, cumulus cells are

involved in extracellular matrix and apoptosis via micro-

RNAs (MIR29a, MIR30d, MIR21, MIR93, MIR320a,

MIR125a and the LET7 family) [7].

There are differences in hormonal levels throughout the

cycle in DOR patients compared to patients with NOR at

the same age, which suggests that granulosa cells are useful

as target points for further investigation [31]. In addition,

studies in mice, sheep and humans [22, 31] have revealed

changes in ovulation and fertilisation rates due to alter-

ations in the gene expression of granulosa cells. These

finding also suggest a role of granulosa cell function in

women who have DOR and in fertilisation.

Many research groups have investigated eggs and gran-

ulosa cell transcriptomes to find the regulatorymechanismof

OR using several high-throughput techniques, such as

SAGE, EST analysis, massively parallel signature

sequencing and microarrays [1, 14, 32, 33]. These efforts

have succeeded in identifying altered important genes that

are involved in DOR, such as CXXC5, FOXC1, CTGF,

FSTL3, PTGS2 and SOCS2, GREM1, PGRMC2, PTGER3,

StAR, LHCGR, StARD4, IGF1R and IGF2R [16, 19, 22, 31].

Advanced computational biology approaches such as net-

work analysis, gene ontology (GO), and meta-analysis have

been developed recently to discover functions of genes and

protein structures and provide a comprehensive view on

underlying molecular mechanisms of systems biology [2].

Dynamic protein interaction network analysis, in particular

regulatory network analysis, is a strong well-developed

system biology analytical tool in understanding of the final

goal of gene/protein interactions, and selecting the central

genes/proteins (hubs) [30]. Herein, protein interaction net-

works of up- or down-regulated DOR genes were examined

to investigate the underlying biological processes that

govern gene functions and operations and also to discover

any possible novel interaction pathway.

GO of up-regulated and downregulated genes is an

important analysis in interpreting the transcriptome and

disease [9, 12, 13]. GO enrichment categorises the genes

and proteins using the controlled universal vocabulary in

three groups of Biological Process, Molecular Function,

and Cellular Component which results in the same func-

tional annotation understanding. GO analysis of a given

sample verses GO distribution of whole genome (as ref-

erence) by hypergeometric test monitors the different

pathways and functional groups.

The aim of this study was to apply a range of compu-

tational biology methods such as network construction,

network discovery, and GO analysis to unravel regulatory

components and mechanism of DOR.

Materials and methods

Up- and down-regulated gene lists (presented in Tables 1 and

2, respectively) of DOR were extracted based on microarray

experiments from previous scientific publications

[19, 21, 22, 31, 38]. The up- and down-regulated DOR genes

(presented in Tables 1 and 2, respectively) were targeted for

bioinformatics analysis to construct regulatory networks.

Protein interaction network construction

Interaction protein networks for the mentioned up- or

down-regulated genes were constructed using Pathway

Studio Web tool from Elsevier Life Science. Pathway

Studio is a ‘‘biological decision support tool’’ that gathers

the interaction information based on literature mining,

microRNA prediction effect, transcription factor-promoter

binding and helps the scientists understand disease mech-

anisms and predict putative functionality and target-drug

interactions by analysing and visualising them in a bio-

logical context’’ (http://www.elsevier.com/online-tools/

pathway-studio). This tool integrates data from several

databases, namely, RESNET (http://www.ariadnege

nomics.com/), KEGG [20], GO [6], DIP [40], ERGO

(http://www.integratedgenomics.com/) and PathArt (http://

jubilantbiosys.com/) [24]. The system provides computa-

tional algorithms that automatically extract data from the

literature. In the present study, algorithms such as neigh-

bourhoods of expansion, sub-network discovery by Gene

Set Enrichment (GSE) gene ontology were used to con-

struct the up- and down-regulated DOR gene networks in

this study. In particular, GSE is a powerful tool which finds

the putative significant networks generated buy up- and

down-regulated DOR genes at p = 0.05 [4, 10].
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To construct interaction pathways from the genes of

interest (Tables 1, 2), one neighbourhood of the expansion

algorithm was used. Both the upstream and downstream

direction for each entity were chosen and set for the fol-

lowing parameters: group, functional class, complex, pro-

tein, pathway, cell process, cell object, treatment and

diseases as well as the relation types of expression, regu-

lation, mol-transport, protein modification, promoter

binding, mol-synthesis, chemical reaction and direct regu-

lation (Tables 3, 4, 8).

Moreover, one neighbour in the expansion algorithms

was used to construct the pathway that is related to

microRNAs entities. Following the selection of both the

upstream and downstream directions for each entity,

miRNAs that affect the relation types were nominated for

further analysis. Protein interaction networks based on the

mentioned entities were extracted to demonstrate their

relations at the protein level.

To construct an interaction network based on small

molecules and diseases with all of the pre-existing protein–

protein interaction datasets, the algorithm was created

using neighbour expansion between entities. Both the

upstream and downstream directions for each entity were

chosen and set for small molecules and diseases, to search

relations with regulation and expression parameters.

Gene ontology (GO) analysis

GO analysis was performed to describe the gene products

in three categories, namely, biological process, molecular

function and cellular component [6, 12, 13].

Comparison of GO distribution of up/down

expressed genes in DOR verses genome

GO distribution of up/down expressed genes in DOR were

compared to the genome (as reference) to find the func-

tional groups in biological process, molecular functions,

and cellular components which are over/down represented

in DOR altered genes based on hypergeometric method by

Comparative GO web tool [9, 12, 13]. Also, Pathway

Studio software was used to identify overrepresented GO

terms and to find out whether the genes are functionally

related, as well. Over-represented GO terms were nomi-

nated using corrected p-values at the significance level of

p\ 0.05 and the enrichment of three specific categories,

namely, biological processes, molecular functions, cellular

components.

Comparison of GO distribution of up/down

expressed genes in DOR verses genome

Wilcoxon signed rank test and two-sample Kolmogorov–

Smirnov test were used to compare GO distribution in

biological process, molecular functions, and cellular com-

ponents between up and down expressed genes in DOR.

Table 1 Selected up-regulated genes in diminished ovarian reserve

(DOR)

Genes up-

regulated in

diminished

ovarian reserve

Designation Reference

CTGF Connective tissue growth factor [22]

FSTL3 Follistatin-like 3 [22]

PTGS2 Prostaglandin endoperoxide synthase

2

[22]

SOCS2 Suppressor of cytokine signaling 2 [22]

LHCGR Luteinizing hormone receptor [31]

PGTER3 Prostaglandin E receptor 3 (subtype

EP3)

[31]

PGRMC2 Progesterone receptor membrane

component 2

[31]

StAR Steroidogenic acute regulatory protein [31]

StARD4 StAR-related lipid transfer domain

containing 4

[31]

CITED2 C-terminal domain 2 [22]

GAS-1 Growth arrest-specific 1 [22]

Table 2 Selected down-

regulated genes in diminished

ovarian reserve (DOR)

Genes down-regulated in diminished ovarian reserve Designations Reference

CXXC5 CXXC finger protein 5 [22]

FOXC1 Forkhead box C1 [22]

GREM1 Impaired gremlin1 [19]

CXXC5 CXXC finger protein 5 [22]

GBP2 Guanylate-binding protein 2 [22]

ZMIZ1 Zinc finger MIZ-domain containing 1 [22]

IGF1 Insulin-like growth factor 1 [19]

IGF2 Insulin-like growth factor 2 [19]

AMH Anti-Müllerian hormone [38] [21]
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Network and GO enrichment analysis

Subnetwork analysis

For subnetwork discovery, Gene Set Enrichment [34] and

Fisher’s exact test was used. In short, highly possible

subnetworks (p B 0.05) of up and down regulating genes

in DOR with were identified by:

(1) Selection of an enriched database of gene, protein,

and small RNA interactions of Pathway Studio web

tool (Elsevier), called ResNet, as reference. This

database includes 30,730 pathway collections and

6,566,957 relations of different types of interactions

(such as promoter binding, microRNA effect,

expression, etc.) and their references. The data is

collected via text mining by Medscan tool [25] as

well as entries from the major resources such as

KEGG (http://www.genome.jp/kegg/) and mirBAse

(http://www.mirbase.org/), etc. MedScan employs

NLP(Natural Language Processing) algorithm and is

extensively used for literature mining and relation-

ship extraction [25].

(2) The obtained list of up and down regulated genes in

DOR were used as a query against the pathways of

small molecules, microRNAs, protein interaction

networks, etc. to evaluate the existence of DOR

genes in each of these pathways. Statistical presence,

here called enrichment, of DOR related genes was

measured using Fisher’s exact test at p B 0.05.

GO analysis

We also used the enrichment concept to predict the func-

tional meaning/aim of the DOR related genes in three terms

of biological process, molecular function, and cellular

component using Comparative GO tool, as previously

described [9, 13]. As enrichment analysis needs a reference

for GO enrichment comparison and calculating the p value,

we used theGO enrichment distribution of human genome as

reference. The difference between enrichment of DOR

related genes, compared to GO enrichment of genome, in

each GO category was measured by Fisher’s exact test. This

procedure is called hyper-geometric analysis of GO distri-

bution [12]. It is expected that the differentially enriched

GOs verses genome govern the induction of DOR describing

the particular functions that the DOR gene list are involved.

Table 3 Relation between small molecules and up-regulated proteins

Relation Type Connectivity

Melatonin —| PTGS2 Expression 2

Zn2? –?[PTGS2 Expression 2

AMP –?[STAR Expression 2

Ca2?–?[STAR Expression 2

AMH —| LHCGR Expression 2

Lipid –?[CTGF Expression 2

Glucocorticoids —[STAR Expression 2

Steroids —| PTGS2 Expression 2

Estrogens –?[LHCGR Expression 2

Progesterone —[PTGS2 Expression 2

Progesterone —| LHCGR Expression 2

Estrogens —[PTGS2 Expression 2

D-glucose –?[PTGS2 Expression 2

Aldosterone —?[PTGS2 Expression 2

Steroids —[STARD4 Expression 2

Glucocorticoids –?[CTGF Expression 2

Aldosterone –?[CTGF Expression 2

Serotonin —[PTGS2 Expression 2

Tretinoin —| LHCGR Expression 2

AMP –?[PTGS2 Expression 2

Lipid –?[PTGS2 Expression 2

Glucocorticoids –?[SOCS2 Expression 2

D-glucose –?[CTGF Expression 2

Tretinoin –?[CTGF Expression 2

Estrogens –?[SOCS2 Expression 2

Cholesterol —[STARD4 Expression 2

Testosterone –?[PTGS2 Expression 2

ATP —[PTGS2 Expression 2

Serotonin –?[CTGF Expression 2

PGE2 –?[ PTGS2 Expression 2

Cholesterol —| PTGS2 Expression 2

Glucocorticoids —| PTGS2 Expression 2

Tretinoin —[PTGS2 Expression 2

Ca2?–?[PTGS2 Expression 2

Steroids —[LHCGR Expression 2

Dopamine —| PTGS2 Expression 2

Testosterone —| STAR Expression 2

Taurine —| PTGS2 Expression 2

PGE2 —[CTGF Expression 2

Fe2?–?[PTGS2 Expression 2

Mn2?–?[PTGS2 Expression 2

D-aspartate –?[STAR Expression 2
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Table 4 Sub-networks enriched with expression targets using up-regulated genes

Name Total no. of

neighbors

Overlap Percent

overlap

Gene set seed Overlapping entities p values

Neighbors of GDF9 17 3 16 GDF9 PTGS2,STAR,LHCGR 3.93454e-06

Neighbors of STAT5A 22 3 13 STAT5A PTGS2,CITED2,SOCS2 8.49831e-06

Neighbors of prostaglandin

F2alpha

30 3 9 Prostaglandin

F2alpha

PTGS2,STAR,LHCGR 2.14041e-05

Neighbors of ADIPOQ 42 3 6 ADIPOQ PTGS2,STAR,LHCGR 5.80889e-05

Neighbors of gonadotropin 49 3 6 Gonadotropin PTGS2,STAR,LHCGR 9.16357e-05

Neighbors of MET 8 2 22 MET PTGS2,CTGF 0.000117095

Neighbors of INHBA 58 3 5 INHBA CTGF,LHCGR,FSTL3 0.000150673

Neighbors of HMGCR 12 2 15 HMGCR PTGS2,CTGF 0.000252697

Neighbors of IGF1 191 4 2 IGF1 PTGS2,CTGF,STAR,LHCGR 0.000292064

Neighbors of PRKCZ 13 2 14 PRKCZ PTGS2,LHCGR 0.000294519

Neighbors of CDC42 14 2 13 CDC42 PTGS2,CTGF 0.000339491

Neighbors of PRKCB 15 2 12 PRKCB PTGS2,CTGF 0.000387604

Neighbors of BMP6 18 2 10 BMP6 STAR,LHCGR 0.000550686

Neighbors of SMAD7 19 2 10 SMAD7 CTGF,FSTL3 0.000611264

Neighbors of PTGER2 21 2 9 PTGER2 PTGS2,STAR 0.000741688

Neighbors of NPPA 23 2 8 NPPA PTGS2,STAR 0.000884408

Neighbors of serotonin 24 2 8 Serotonin PTGS2,CTGF 0.000960355

Neighbors of F2R 25 2 7 F2R PTGS2,CTGF 0.00103935

Neighbors of EGF 271 4 1 EGF PTGS2,CTGF,STAR,LHCGR 0.00110643

Neighbors of FSH 26 2 7 FSH STAR,LHCGR 0.00112138

Neighbors of VEGFA 122 3 2 VEGFA PTGS2,CTGF,GAS1 0.00131819

Neighbors of KNG1 30 2 6 KNG1 PTGS2,CTGF 0.00147967

Neighbors of JAK2 30 2 6 JAK2 PTGS2,STAR 0.00147967

Neighbors of glutathione

RED

30 2 6 Glutathione RED PTGS2,CTGF 0.00147967

Neighbors of PGR 32 2 6 PGR PTGS2,LHCGR 0.0016768

Neighbors of RAC1 36 2 5 RAC1 PTGS2,CTGF 0.00210663

Neighbors of LPA 38 2 5 LPA PTGS2,CTGF 0.00233919

Neighbors of sphingosine-1-

P

39 2 5 Sphingosine-1-P PTGS2,CTGF 0.00245985

Neighbors of LEP 152 3 1 LEP PTGS2,CTGF,STAR 0.00247597

Neighbors of glucocorticoids 351 4 1 Glucocorticoids PTGS2,CTGF,STAR,SOCS2 0.00290404

Neighbors of RHOA 43 2 4 RHOA PTGS2,CTGF 0.00297148

Neighbors of VIP 46 2 4 VIP PTGS2,STAR 0.00338538

Neighbors of cAMP 372 4 1 cAMP PTGS2,CTGF,STAR,LHCGR 0.00359656

Neighbors of lipid 54 2 3 Lipid PTGS2,CTGF 0.00461362

Neighbors of steroids 203 3 1 Steroids PTGS2,LHCGR,STARD4 0.00561095

Neighbors of aldosterone 61 2 3 Aldosterone PTGS2,CTGF 0.00583408

Neighbors of TGFB1 428 4 0 TGFB1 PTGS2,CTGF,STAR,LHCGR 0.00599532

Neighbors of TGFA 63 2 3 TGFA PTGS2,CTGF 0.00620733

Neighbors of GNRH1 63 2 3 GNRH1 PTGS2,LHCGR 0.00620733

Neighbors of LIF 64 2 3 LIF PTGS2,SOCS2 0.00639799

Neighbors of cholesterol 72 2 2 Cholesterol PTGS2,STARD4 0.00801931

Neighbors of BMP2 76 2 2 BMP2 PTGS2,CTGF 0.00889307

Neighbors of IL4 252 3 1 IL4 PTGS2,CTGF,SOCS2 0.0102287

Neighbors of AMP 82 2 2 AMP PTGS2,STAR 0.010281

Neighbors of PRL 93 2 2 PRL LHCGR,SOCS2 0.0130612
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Meta-analysis of the key regulating genes of DOR

To verify our conclusions, after the identification of the key

regulating genes in diminished ovarian reserve (DOR) by

network and GO analysis, the key up-regulated genes

(PTGS2, CTGF, LHCGR, CITED, SOCS2, STAR and

FSTL3) were used for meta-analysis based on available

microarray and RNAseq-based expression data using

COXPRESdb web tool [27] as previously described [10].

COXPRESdb has been developed for gene coexpression

analysis of large amount of publicly available microarray

and RNA-seq expression data which allows relative

expression analysis of thousands of genes simultaneously

[10, 27]. For meta-analysis of gene expression data, we

used correlation ranking approach using Mutual Ranking

(MR). MR is a reliable ranking correlation coefficient for

measuring biological significance of gene coexpression

[26]. In particular, the higher effectiveness of MR com-

paring to Pearson correlation coefficient is documented in

large-scale microarray data of different organisms.

Control independent dataset for measuring the validity

of network analysis

In addition to theabovementionedstatistical analysis, a control

independent dataset was generated and subjected to network

analysis to show the validity of the performed analysis.

To this end, the following steps were performed:

(1) Whole list of human genes were downloaded from

BioMart– Ensembl (http://www.ensembl.org/bio

mart/)

(2) One hundred random samples were taken from the

all human genes by randomisation tool in Microsoft

Excel. Each sample contained 50 genes.

(3) Regulatory subnetwork analysis was performed on

each of random samples

If the random samples, does not announce the network

of regulatory genes significant, this means that our

enrichment analysis is robust and the networks of DOR

genes in this study are reliable.

Results

General networks

Protein interaction (PI) networks were constructed based

on the mentioned methods for up- and down-regulated

genes to demonstrate their relations at the protein level.

Supplementary 1 was constructed using one neighbourhood

in the expansion algorithm, and it illustrates a regulatory

network that is common to the up-regulated proteins of

DOR. This network is comprised of 768 entities and 1128

relations. Different relation types in the PI networks were

computed, including Expression (580 types), Regulation

(315 types), Promoter Binding (88 types), Binding (71

types), Direct Regulation (30 types), miRNA Effect (18

types), Mol-Synthesis (17 types), Mol-Transport (13 types)

and Chemical-Reaction (3 types). Among the different

proteins in this network, PTGS2, CTGF, LHCGR, CITED,

SOCS2, STAR and FSTL3 proteins were the key nodes

Table 4 continued

Name Total no. of

neighbors

Overlap Percent

overlap

Gene set seed Overlapping entities p values

Neighbors of EDN1 99 2 2 EDN1 PTGS2,CTGF 0.0147029

Neighbors of cortisol 99 2 2 Cortisol PTGS2,CTGF 0.0147029

Neighbors of ROS 99 2 2 ROS PTGS2,CTGF 0.0147029

Neighbors of F2 100 2 1 F2 PTGS2,CTGF 0.014985

Neighbors of PGE2 102 2 1 PGE2 PTGS2,CTGF 0.0155562

Neighbors of HGF 111 2 1 HGF PTGS2,CTGF 0.0182432

Neighbors of GH1 111 2 1 GH1 STAR,SOCS2 0.0182432

Neighbors of testosterone 111 2 1 Testosterone PTGS2,STAR 0.0182432

Neighbors of EGFR 112 2 1 EGFR PTGS2,CTGF 0.0185534

Neighbors of MAPK3 119 2 1 MAPK3 PTGS2,CTGF 0.0207881

Neighbors of MAPK8 133 2 1 MAPK8 PTGS2,CTGF 0.0255837

Neighbors of MAPK14 152 2 1 MAPK14 PTGS2,CTGF 0.0327557

Neighbors of estrogens 390 3 0 Estrogens PTGS2,LHCGR,SOCS2 0.033061

Neighbors of IFNG 408 3 0 IFNG PTGS2,CTGF,SOCS2 0.0371777

Neighbors of Ca2? 163 2 1 Ca2? PTGS2,STAR 0.0372393

Neighbors of Ethanol 183 2 1 Ethanol PTGS2,CTGF 0.0459772
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with the highest number of interactions (Supplementary).

PTGS2 showed positive effects on reproductive functions

such as decidualisation, follicular rupture, ovulation, fer-

tilisation, cell growth and cell migration.

For down-regulated genes, 294 entities and 386 relations

were extracted. Different relation types in the PI networks

were observed, including Regulation (408 types), Expres-

sion (376 types), Binding (65 types), Mol-Transport (42

types), Promoter Binding (27 types), Direct Regulation (27

types), Mol-Synthesis (20 types), miRNA Effect (13 types)

and Prot-Modification (4 types). Among the different pro-

teins in this network, the IGF2, AMH, GREM1, FOXC1

proteins showed the highest number of interactions. IGF2

showed positive effects on reproductive functions such as

pregnancy, oocyte maturation and steroid production. The

excel files of these networks are provided in Supplemen-

tary materials.

Sub-networks

To examine the details of the aforementioned networks,

various sub-networks were constructed, as follows:

miRNA Sub-networks

A total of 46 objects were checked, and the sub-network of

the miRNA pathways of the nodes, including 16 miRNAs

with 18 relations, was obtained. Some of the differentially

expressed proteins, such as STAR, STAR4, LHCGR and

GAS1, have not been implicated in the microRNA net-

works; on other hand, MIRN101-1, MIRN153-1 and

MIRN194-1 serve as negative regulators of the SOCS2

protein, and MIRN101-1 and MIRN26A1 serve as negative

regulators of the PTGS2 protein (Supplementary 2). In

addition, PI networks were extracted to demonstrate

microRNA relations at the level of th protein for down-

regulated genes. A total of 34 objects were checked, and 12

entities with 13 relations were found. Our results showed

that CXXC5 was inhibited by MIRN219-1, MIRN188 and

MIRN199A1. Moreover, MIRN128-1, MIRN129,

MIRN23A and MIRN27A suppressed GREM1; however,

some proteins, such as AMH, IGF2 and GBP2, have not

been affected by any microRNAs (Supplementary 2).

Small Molecule Sub-networks

We constructed an interaction network based on small

molecules, cell process and diseases with the entire pre-ex-

isting protein–protein interaction dataset of up/down regu-

lated genes and the relations in the PI networks that were

found in the up/down regulated proteins of DOR; this net-

work is demonstrated in Fig. 1, respectively. As demon-

strated in Fig. 1, small molecules such as Zn2?, Mn2?, Fe2?

and Ca2? have a positive effect on the expression of PTGS2;

however, some small molecules, such as steroids, melatonin

and taurine, have a negative effect on PTGS2 expression.

Glucocorticoids have a positive effect on STAR and SOCS2

expression. As shown in Fig. 1, Zn2? and Ca2? have a pos-

itive effect on IGF1 expression, as well.

The PTGS2/COX2 (Prostaglandin-endoperoxide syn-

thase or cyclooxygenase 2), up-regulated protein in DOR is

located in the membrane. The COX2-derived PGI2 played

a critical role in blastocyst implantation and decidualisa-

tion, and PGI2 mediates its function via PPAR delta

receptor. Cox-2 deficit contributes to faulty ovulation,

fertilisation, implantation, and decidualisation. The excel

format of the networks are provided in the corresponding

Supplementary 3.

Regulatory sub-networks

Sub-networks that were enriched with expression and

regulation targets were generated based on the genes in

Table 5 and Supplementary 5. According to the analysis,

small molecules of glucocorticoids overlapped with

PTGS2, CTGF, STAR and SOCS2 (Fig. 2), and cAMP

overlapped with PTGS2, CTGF, STAR and LHCGR

(Fig. 2). The gene set seed, IGF1 protein, overlapped with

PTGS2, CTGF, STAR and LHCGR (Fig. 2). Interestingly,

the network demonstrates that transforming growth factor-

beta1 (TGF-beta 1) regulates an important sub-network

that is enriched with expression entities. Relations of this

network and its corresponding references are presented in

Supplementary 5 and Fig. 2. As illustrated in, TGF-beta 1,

as the central network protein, interacts with the up-regu-

lated proteins DOR, including prostaglandin-endoperoxide

synthase (PTGS2), CTGF, STAR and LHCGR. This pro-

tein causes the expression of PTGS2 and CTGF but inhibits

the expression of STAR and LHCGR. PTGS2 expression

has been demonstrated to be controlled by GDF-9. In

addition, GDF9 showed a positive effect on PTGS2 and

STAR expressions and inhibited LHCGR expression

(Fig. 2 and Supplementary 4). As can be seen in Fig. 2,

EGF protein has covered PTGS2, CTGF, STAR and

LHCGR. Moreover, CTGF affects ovulation (Fig. 2 and

Supplementary 5).

In addition, the other network indicates that IL-6 is an

important regulating sub-network (Fig. 2). The relations of

this network and its corresponding references are presented

in Supplementary Table 4. In addition, IL6, as the central

network protein, interacts with the up-regulated proteins

PTGS2 and LHCGR in DOR Fig. 3.

Further predictive bioinformatics analyses were con-

ducted using GO analysis to identify gene products in three

categories: the biological process, molecular function and

cellular component. Receptor binding and DNA binding
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were overrepresented categories based on molecular func-

tion.Most of the represented data thatwas enriched in theGO

terms were related to biological process, molecular function

and cellular component, respectively (Supplementary data

9). As demonstrated in the supplementary data, GO analysis

has provided the key role of up-regulated genes regulating

the biological processes in the reproductive field. PTGS2 and

CITED2 regulate decidualisation, and PTGS2 regulates

ovulation and embryo implantation. The embryonic process

involved in female pregnancy and embryonic development

in utero are regulated by CITED2. Additionally, spermato-

genesis and the luteinising hormone signalling pathway are

regulated by FSTL3 and LHCGR, respectively.

Expression sub-networks

Sub-networks that were enriched with expression and

regulation were constructed and analysed using the down-

regulated genes (Supplementary 6). CSH1 has a positive

effect on IGF1 and IGF2 expression (Supplementary 1),

and BMP2 serves as a positive regulator of IGF2, IGF1 and

GREM1. GH1 has both positive and negative effects on

IGF1 expression and a positive effect on IGF2 expression.

Supplementary data are provided in excel format (Sup-

plementary data excel 10). We could not find statistically

significant results regarding sub-networks that were enri-

ched with chemical reactions.

Other predictive bioinformatics analyses were con-

ducted for Anti-Mullerian hormone, which mediates male

sexual differentiation. This hormone causes the regression

of Mullerian ducts, which prevents their differentiation into

the uterus and fallopian tubes. In addition, it is used as a

marker in some ovarian tumours or ovarian reserve

assessments in infertility cases. AMH expression is affec-

ted by oestrogen in mammals through E2-mediated inhi-

bition of follicle growth. It reduces the amount of LH

Fig. 1 Interaction network of small molecules and proteins in diminished ovarian reserve (DOR)

Table 5 Sub-networks enriched with regulation targets using up-regulated genes

Name Total no. of neighbor Overlap overlap percent Gene set seed Overlapping entities p value

Neighbors of FGF9 10 2 18 FGF9 STAR,LHCGR 4.7311e-05

Neighbors of FSH 30 2 6 FSH STAR,LHCGR 0.000396034

Neighbors of gonadotropin 51 2 3 gonadotropin PTGS2,LHCGR 0.00111759

Neighbors of IL6 237 2 0 IL6 PTGS2,LHCGR 0.0216627

Neighbors of EGF 238 2 0 EGF PTGS2,LHCGR 0.0218345
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receptor messenger RNA (mRNA) in postnatal rat granu-

losa cells. Similarly, AMH decreases the FSH-dependent

increase in aromatase activity and LH receptor expression

in granulosa cell cultures (Supplementary 6).

GO analysis

Comparison of GO distribution of up/down regulated genes

in DOR verses genome

GO distribution of up and down regulated genes compared

to genome is presented at Tables 6 and 7, according to

Fisher Exact test (hypergeometric test).

For up-regulated genes, GOs which were significantly

altered (p\ 0.05) in Biological Process were: male gonad

development, response to fatty acid, positive regulation of

cell–cell adhesion, response to estradiol, decidualization,

positive regulation of gene expression, response to peptide

hormone, response to estrogen, hematopoietic progenitor

cell differentiation, and regulation of cell growth. GOs

which were significantly altered (p\ 0.05) in Molecular

Function were: lipid binding and heme binding. GOs which

were significantly altered (p\ 0.05) in Cellular Compo-

nent were neuron projection, Golgi apparatus, and extra-

cellular space.

For up-regulated genes, GOs which were significantly

altered (p\ 0.05) in Biological Process were: exocrine

pancreas development, positive regulation of glycogen

biosynthetic process, artery morphogenesis, positive regu-

lation of activated T cell proliferation, positive regulation

of mitosis, skeletal system development, positive regula-

tion of transcription from RNA polymerase II promoter,

blood vessel remodelling, and collagen fibril organization.

GOs which were significantly altered (p\ 0.05) in

Molecular Function were: insulin-like growth factor

receptor binding, insulin receptor binding, hormone activ-

ity, and zinc ion binding. GOs which were significantly

altered (p\ 0.05) in Cellular Component were platelet al-

pha granule lumen, extracellular space, extracellular

region, and cytoplasm.

Comparison of GO distribution of up regulated genes

versus down regulated genes in DOR

According to Wilcoxon signed rank test with continuity

correction and Two-sample Kolmogorov–Smirnov test, GO

distribution of up regulated genes were different from

down regulated genes at p\ 0.01.

bFig. 2 Statistically significant regulatory sub-networks (p B 0.05) in

in diminished ovarian reserve (DOR)
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Comparative GO analysis of up and down regulated

genes is presented at Supplementary 7, Supplementary 8,

and Supplementary 9, respectively, for Biological Process,

Molecular Function, and Cellular Component.

In Biological Process, GOs including ossification,

ovarian follicle development, vasculogenesis, and tran-

scription, DNA-templated are different between up regu-

lated genes and down regulated genes. In Molecular

Function term, sequence-specific DNA binding transcrip-

tion factor activity (CITED2 and FOXC1), and insulin-like

growth factor receptor binding (SOCS2, IGF1, and IGF2)

are different. Golgi apparatus is the major differential

group in cellular component.

Meta-analysis of the key regulating genes of DOR

The key up-regulated genes in interaction network of DOR,

including, PTGS2, CTGF, LHCGR, CITED, SOCS2,

STAR and FSTL3, were used for co-expression using

correlation ranking by COXPRESdb. GO tool was used to

predict the function of co-expressed genes. The microarray

data in NCBI GEO repository (http://www.ncbi.nlm.nih.

gov/geo/) employed for meta-analysis. The list of 100 co-

expressed genes with each of PTGS2, CTGF, LHCGR,

CITED, SOCS2, STAR and FSTL3 are presented in Sup-

plementary 10.

The list of genes which were shared between two or more

co-expressed list is presented at Supplementary 11. CTGF,

connective tissue growth factor, had the highest number of

shared co-expressed genes with the other co-expressed

datasets (Supplementary 11) as 26 out of 100 coexpressed

genes with CTGF were also coexpressed with the other

datasets with the key up-regulated genes in DOR. Biological

process (GO) of CTGF is organ senescence. According to

KEGG, CTGF is linked to focal adhesion pathway coex-

pressed with MYL9, THBS1, ITGA5, and VEGFC.

Fig. 3 Schematic

representation of data analysis

and computational tools used in

this study

Mol Biol Rep

123

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Control independent dataset of network analysis

The result of regulatory network analysis is presented at

Supplementary 12. Most of random samples did not pick

any regulator or significant subnetwork. Also, none of the

regulatory genes is present as regulator of random samples.

This shows that the performed analysis is robust in deter-

mining the specific regulators and networks of DOR genes.

Discussion

Schematic representation of data analysis and computa-

tional tools used in this study are presented in Fig. 3.

Protein interaction networks of up- or down-regulated

genes help to find the underlying biological processes that

govern these genes’ functions and operations. Network

analysis of up-regulated genes in diminished ovarian

reserve showed that some of the differentially expressed

proteins, such as STAR, STAR4, LHCGR, and GAS1, did

not resemble any connectivity to participants in the miRNA

network; on the other hand, MIRN101-1, MIRN153-1 and

MIRN194-1 inhibit the SOCS2 protein. In addition,

MIRN153-1 inhibited both the CITED2 and SOCS2 up-

regulated proteins. SOCS2, which is also known as a

suppressor of the cytokine signalling (SOCS) family, has

an important role in the Janus kinase (JAK) and STAT

signalling pathways. In addition, it is a negative regulator

of the insulin-like growth factor (Igf)-1 signalling cascade

[23]. It has been shown that it has relations with follicular

growth and granulosa cell proliferation in mice ovaries, and

the absence of its expression contributes to poor repro-

ductive performance [18, 22].

PTGS2/COX2 is an up-regulated protein in DOR that is

located in the membrane. This protein is the main enzyme in

prostaglandin biosynthesis, which is induced in inflamma-

tion and mitogenesis and is up-regulated in patients with

DOR. Its expression affects cumulus cell expansion and

maturation, differentiation, oocyte capability and embryo

quality [8, 11, 15, 17, 36]. Interestingly, GO analysis of these

proteins using the Pathway Studio package revealed that this

protein is involved in biological processes and is responsible

for the negative regulation of cell proliferation, synaptic

transmission, dopaminergic and calcium ion transport as

well as the positive regulation of cell proliferation, synaptic

transmission, glutamatergic, apoptosis, smooth muscle cell

proliferation, vasoconstriction, smooth muscle contraction

and the regulation of cell cycle; it is also involved in different

molecular functions (Supplementary data 7).

GDF9, an oocyte-secreted factor [8, 11], has a positive

effect on PTGS2 and STAR (steroidogenic acute regulator

protein) expression but inhibits LHCGR expression

(neighbour of GDF9). GDF9 controls the expression of

HAS-2 (hyaluronan synthase 2) and PTGS2 (COX-2) in the

cumulus-oocyte complex (COC), thus contributing to

expansion, growth, proliferation and differentiation of the

cumulus cells (Supplementary data GDF9). GDF9 plays an

important role in female fertility, and mutation in GDF9 is

Table 6 Significant up-regulated gene ontology verses genome in diminished ovarian reserve (DOR)

Biological process Molecular function Cellular component

GO name p value GO name p value GO name p value

Male gonad development 1.28E-09 Lipid binding 2.61E-06 Neuron projection 0.000248

Response to fatty acid 4.74E-08 Heme binding 0.000116 Golgi apparatus 0.024017

Positive regulation of cell–cell adhesion 1.08E-07 Metal ion binding 0.6018 Extracellular space 0.049973

Response to estradiol 2.60E-07 Cytosol 0.084198

Decidualization 5.47E-07 Extracellular region 0.094955

Positive regulation of gene expression 3.26E-06

Response to peptide hormone 5.84E-06

Response to estrogen 9.54E-06

Hematopoietic progenitor cell differentiation 1.66E-05

Regulation of cell growth 2.02E-05

Ossification 2.41E-05

Lung development 2.76E-05

Negative regulation of gene expression 4.24E-05

Negative regulation of apoptotic process 0.000290148

Angiogenesis 0.00045005

Small molecule metabolic process 0.01055518

Positive regulation of transcription 0.01655691
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a novel cause of diminished ovarian reserve in young

women [39].

In addition, TGF-beta 1 interacts with the up-regulated

proteins in DOR, including PTGS2, CTGF, STAR and

LHCGR. SMAD4 is an important factor of the TGFbeta

superfamily signalling pathway. The findings of Pangas

[28] demonstrate that the problem in SMAD4 in the

ovarian granulosa cells results in the premature luteinisa-

tion of granulosa cells and premature ovarian failure; thus,

the TGFbeta superfamily is important in growth and in

differentiation control of granulosa cells. The TGFB family

has a role in the creation of oocytes during embryogenesis

followed by gathering and activation of the primordial

follicle.

IL-6, as the central network protein, is interacting with

up-regulated proteins such as PTGS2 and LHCGR in DOR.

The results are consistent with the view that IL-6 may have

a physiological role in the maturation of ovarian follicles

by modulating the achievement of the LHR in granulosa

cells. GO analysis of these proteins using the Pathway

Studio package revealed that this protein is involved in

biological processes and is responsible for the regulation of

angiogenesis, negative regulations of cell proliferation,

hormone secretion, apoptosis, chemokine biosynthetic

process, and collagen biosynthetic process as well as the

positive regulation of anti-apoptosis, B cell activation,

T-helper 2 cell differentiation, and T cell proliferation.

Additionally, IL-6 itself can also lead to the induction of

COX-2. Furthermore, our analysis demonstrates that cAMP

is important in the induction of PTGS2, STAR, LHCGR

gene expression and CTGF inhibition.

Network analysis of down-regulated expressed genes in

diminished ovarian reserve showed that proteins such as

AMH, IGF2 and GBP2 did not find connectivity to par-

ticipate in the microRNA network; on the other hand,

MIRN128-1, MIRN129, MIRN23A and MIRN27A inhibit

the GREM1 protein. In addition, MIRN129 inhibits both

the IGF2 and GREM1 down-regulated proteins.

Table 7 Significant down-regulated gene ontology verses genome in diminished ovarian reserve (DOR)

Biological process Molecular function Cellular component

GO name p value GO name p value GO name p value

Exocrine pancreas development 1.09E-08 Insulin-like growth factor

receptor binding

3.43E-08 Platelet alpha

granule lumen

2.11E-06

Positive regulation of glycogen biosynthetic

process

3.93E-08 Insulin receptor binding 5.67E-08 Extracellular space 0.000225

Artery morphogenesis 2.39E-07 Hormone activity 1.20E-06 Extracellular region 0.007908

Positive regulation of activated T cell proliferation 2.93E-07 Zinc ion binding 0.0358 Cytoplasm 0.089425

Positive regulation of mitosis 3.79E-07

Skeletal system development 5.80E-07

Positive regulation of transcription from RNA

polymerase II promoter

8.80E-07

Blood vessel remodeling 8.82E-07

Collagen fibril organization 1.41E-06

Positive regulation of fibroblast proliferation 2.41E-06

Positive regulation of MAPK cascade 5.37E-06

Positive regulation of peptidyl-tyrosine

phosphorylation

9.48E-06

Platelet degranulation 1.07E-05

Positive regulation of protein kinase B signaling 1.09E-05

Positive regulation of NF-kappaB transcription

factor

4.94E-05

Positive regulation of cell proliferation 6.32E-05

In utero embryonic development 0.000241

Cell–cell signaling 0.000264

Response to drug 0.000567

Blood coagulation 0.001671

Signal transduction 0.001721

Positive regulation of transcription, DNA-

templated

0.002347
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Furthermore, in unexplained infertility, primary elevated

GH-BP by excessive GH-BP levels may prevent GH from

binding to its receptor and therefore reduce intraovarian

IGF-1 production.

In conclusion, the up-regulated PTGS2, CTGF,

LHCGR, CITED, SOCS2, STAR and FSTL3 proteins were

selected as the key nodes with the highest number of

interactions; at the same time, the IGF2, AMH, GREM1,

and FOXC1 proteins had the highest number of interactions

in down-regulated networks. Three miRNAs (MIRN101-1,

MIRN153-1 and MIRN194-1) inhibited SOCS2 protein

expression, and TGF-beta 1, as a small molecule, regulated

an important sub-network that was enriched with expres-

sion entities. CSH1 showed a positive effect on IGF1 and

Table 8 Comparison of gene ontology distribution between up-regulated and down-regulated genes in diminished ovarian reserve (DOR)

Gene ontology Up-

regulated

Down-

regulated

Average

change

All genes

Biological process

Ossification (1503) 2 3.75 1.875 CTGF|FSTL3|FOXC1

Ovarian follicle development (1541) 1 3.75 3.75 LHCGR|FOXC1

Vasculogenesis (1570) 2 1.25 0.625 CITED2|ZMIZ1

Transcription, DNA-templated (6351) 1 2.5 2.5 FSTL3|ZMIZ1|FOXC1

Sex determination (7530) 2 1.25 0.625 CITED2|AMH

Aging (7568) 2 1.25 0.625 SOCS2|AMH

Cell aging (7569) 2 1.25 0.625 CITED2|ZMIZ1

Positive regulation of cell proliferation (8284) 1 3.75 3.75 CTGF|GREM1|IGF2|IGF1

Positive regulation of gene expression

(10,628)

6 1.25 0.208333333 STAR|CITED2|CTGF|AMH

Negative regulation of BMP signaling

pathway (30,514)

1 2.5 2.5 FSTL3|GREM1

Response to estradiol (32,355) 4 2.5 0.625 PTGS2|SOCS2|CTGF|IGF2

Response to nicotine (35,094) 4 2.5 0.625 STAR|IGF2

Positive regulation of NF-kappaB import into

nucleus (42,346)

2 1.25 0.625 PTGS2|GREM1

Response to drug (42,493) 6 3.75 0.625 STAR|PTGS2|IGF2|AMH

Camera-type eye development (43,010) 1 3.75 3.75 GAS1|FOXC1

Negative regulation of apoptotic process

(43,066)

4 1.25 0.3125 CITED2|GAS1|SOCS2|IGF1

Response to ethanol (45,471) 4 2.5 0.625 STAR|IGF2

Positive regulation of transcription, DNA-

templated (45,893)

1 2.5 2.5 CITED2|FOXC1|IGF1

Positive regulation of transcription from RNA

polymerase II promoter (45,944)

2 11.25 5.625 FSTL3|CITED2|GREM1|FOXC1|IGF1|ZMIZ1|IGF2

Positive regulation of smooth muscle cell

proliferation (48,661)

2 1.25 0.625 PTGS2|IGF1

Molecular function

Sequence-specific DNA binding transcription

factor activity (3700)

2 2.5 1.25 CITED2|FOXC1

Insulin-like growth factor receptor binding

(5159)

1 2.5 2.5 SOCS2|IGF1|IGF2

Cellular component

Extracellular space (5615) 2 13.75 6.875 CTGF|FSTL3|IGF1|IGF2|GREM1|AMH

Nucleus (5634) 3 7.5 2.5 PTGS2|FSTL3|CITED2|FOXC1|GBP2|ZMIZ1

Cytoplasm (5737) 10 6.25 0.625 SOCS2|PTGS2|CITED2|CXXC5|AMH|ZMIZ1|FOXC1

Golgi apparatus (5794) 2 1.25 0.625 CTGF|FSTL3|GBP2

Cytosol (5829) 6 1.25 0.208333 STAR|CTGF|SOCS2|GBP2

Membrane (16,020) 1 1.25 1.25 PGRMC2|GBP2

Intracellular membrane-bounded organelle

(43,231)

1 1.25 1.25 CTGF|CXXC5
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IGF2 expression, while BMP2 exerted a positive effect on

IGF2, IGF1 and GREM1 expression. GH1 had both a

positive and negative effect on IGF1 expression and a

positive effect on IGF2 expression.

This study employs meta-analysis and computational

biology to find the candidate genes, regulators, and net-

works in DOR, opening a new avenue in this field. More

mechanistic studies with in vitro validation need to be

undertaken in future studies.
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