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ABSTRACT
Recent studies have elucidated that cell-based therapies are promising for cancer treatments. The
human amniotic fluid stem (AFS) cells are advantageous cells for such therapeutic schemes that can be
innately changed to express therapeutic proteins. HAFSCs display a natural tropism to cancer cells in
vivo. They can be useful in cancer cells targeting. Moreover, they are easily available from surplus diag-
nostic samples during pregnancy and less ethical and legal concern are associated with the collection
and application than other putative cells are subjected. This review will designate representatives of
amniotic fluid and stem cell derived from amniotic fluid. For this propose, we collect state of human
AFS cells data applicable in cancer therapy by dividing this approach into two main classes (nonengi-
neered and engineered based approaches). Our study shows the advantage of AFS cells over other
putative cells types in terms differentiation ability to a wide range of cells by potential and effective
use in preclinical studies for a variety of diseases. This study has shown the elasticity of human AFS
cells and their favorable potential as a multipotent cell source for regenerative stem cell therapy and
capable of giving rise to multiple lineages including such as osteoblasts and adipocyte.
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Introduction

Stem cells (SCs) have obtained a great deal of attention rep-
resent a potential and attractive cellular therapy for cancer
diseases (Kim et al. 2010, 2011, Yi et al. 2011). A huge num-
ber of cancer therapy researches have been applied using
adult stem cells, focusing on mesenchymal stem cells (MSCs)
(natural tumor tropism MSCs) (Shinagawa et al. 2015). Few
main sources of MSCs are available in the body such as bone
marrow MSCs (BM-MSCs), peripheral blood, umbilical cord
blood, cord tissue and adipose tissue (Nazari-Shafti et al.
2015). However, pluripotent embryonic stem cells (ESCs) have
the potential to differentiate into a wide range of cell types,
the drawbacks and limitations of adult MSCs are allowing
them to present multipotency and capable of downstream
generation of mesodermal cell types. This drawback could be
interpreted to the low number of MSCs availability in related
tissue (which declines with increasing age), slowly propa-
gated in culture condition and a restricted differentiation
potential (Nazari-Shafti et al. 2015, Murakami et al. 2015). In
addition, less ethical and technical problems with the low risk
of immunological rejection and teratoma formation and car-
cinoma development (Kern et al. 2006).

One of the main properties of MSCs is a low level of
immune rejection for the reason that has the capability to

escape from the natural immune system (Kovach et al. 2015).
Amniotic fluid (AF) is a substitute source of ESCs that have
promising clinical therapeutic applications. AF is commonly
achieved in the second trimester during amniocentesis to
identify any chromosomal malformations, abnormalities and
also to determine the sex of the fetus (La Marca-
Ghaemmaghami et al. 2015). In recent years, scientists have
isolated and characterized AF derived stem cell populations
that are highly multipotent, with the capability to differenti-
ate into hematopoietic, chondrogenic, osteogenic, adipo-
genic, myogenic, endothelial, neural and lung cells, among
other cell lineages (Loukogeorgakis and De Coppi 2016).

AF comprises of different cell types, deriving from embry-
onic and extra-embryonic tissues resembling closely to MSCs
in typical characteristic and morphologically are close to
fibroblast than having higher nuclear/cytoplasm ratio that is
characteristic of pluripotent cells (Gosden 1983, Priest et al.
1978). The properties of these cells such as interacting with
immune cells to modulate the immune response and the pro-
duction of anti-inflammatory factors make perinatal stem cells
an attractive alternative for cell therapy (Carlsson et al. 2015,
Heldring et al. 2015). Consequently, the use of these stem
cells for regeneration or replacement of damaged or diseased
tissue such as bone defects, blood and immune system,
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neural degeneration, myocardial infarction, lung disease and
diabetes would be valuable (Granero-Molto et al. 2008,
Prentice 2006). It is well known that human embryonic stem
cells are derivatives of the inner cell mass of fertilized
embryos. These cells have two significant features: pluripo-
tency and self-renewal (Xu et al. 2015) and in vitro, they can
differentiate into cells of three germ layer. HESCs have many
ethical problems and limitations in researches (Rezania 2015).

Amniotic-derived stem cells having unique characteristics
such as (1) low immunogenicity because of the low expres-
sion level of major histocompatibility complex antigens, (2)
low anti-inflammation when introduced to other bodies, (3)
do not have any ethical objection, (4) their original sources
including amniotic membrane and fluid are easily available
and (5) a less restricted differentiation potential (hematopoi-
etic, chondrogenic, osteogenic, adipogenic, myogenic, endo-
thelial, neural and lung cells, among other cell lineages)
(Gholizadeh-Ghalehaziz et al. 2015, Han et al. 2012). They
have been most popular, because of this unique characteristic
of human embryonic stem cells (Han et al. 2012) (Table 1).

This review will discuss the possible role of amniotic derived
stem cells for various antitumor applications as new possibil-
ities of human stem cells, by focusing on two approaches:
Nonengineered and engineered stem cells strategies.

Development of AFSCs

The characterization of the composition of AFSCs and other
cell populations surrounded by the amniotic fluid has been
expansively studied (De Coppi et al. 2007a, Moorefield et al.
2010). Not amazingly, gestational age plays a significant role
in the composition of cell populations derived from the AF
(Perin et al. 2008). Therefore, when studying the therapeutic
probability of AFSC, the probable changes in inherent charac-
teristics of AFSCs, at their time of harvest, must be measured
when assaying their regenerative or therapeutic potential (Da
Sacco et al. 2010).

Gestationally older donor-derived AFSC could express lin-
eage markers of terminally differentiated cell populations,
which may be confirmed valuable for the replacement of spe-
cific injured populations or repopulation of adult lung tissue,
while AFSCs derived from primitive uncommitted gestation-
ally younger may be helpful for applications of de novo tissue
engineering (Figure 1) (De Coppi et al. 2007a, Moorefield
et al. 2010).

How to isolate and characterize AFSCs?

There are several isolation methods for AFSCs. These methods
have indicated in previous studies and we collected useful

isolation and characterization methods at previous study
(Gholizadeh-Ghalehaziz et al. 2015).

One of the isolation and characterization techniques for
AF stem cells, as shown by De Coppi et al. using a positive
selection for cell membrane receptor c-kit (De Coppi et al.
2007a), which is specific for stem cell factor. The c-kit recep-
tor and its ligand are also implicated in hematopoiesis and
recognize a particular hematopoietic progenitor cell. The
stem cell population is usually selected with the FACS (fluor-
escence-activated cell sorter) or MACS (magnetic-activated
cell sorter) system only and 0.8–1% of the entire cell popula-
tion expresses the surface marker.

Using FACS sorting, it was indicated that AFSCs express
some surface markers and transcription factors characteristic
of embryonic stem cells such us SSEA-4, NANOG and Oct4,
proving that they own some essential characteristics that
embryonic stem cells also have, and signifying that these
cells keep pluripotential ability (Pashaiasl et al. 2016, Todorov
et al. 2015).

Additionally, they stained positively for a range of cell sur-
face markers distinctive of mesenchymal and/or neural stem
cells, including CD44 (hyaluronan receptor), CD73, CD29,
CD90, and CD105. The AFSCs are negative for markers of the
hematopoietic stem cells (CD34, CD133) and of hematopoi-
etic lineage (CD45) (De Coppi et al. 2007a, Toselli et al. 2008,
Maraldi et al. 2014).

The c-kit-positive cells are instantaneously cultured in a
Petri dishes with no require of feeder layer in Chang Media,
with 5% CO2 atmosphere at 37 �C. In one week, they main-
tain a round shape while afterward they can develop into
elongated and believe a fibroblast-like morphology. After this
time, if having 70–80% of confluency, they can be cultured
for many population doublings (De Coppi et al. 2007a, Toselli
et al. 2008, Maraldi et al. 2014).

Others isolation techniques are a single-stage method (for
adhering AF cells) (Graham and Fauza 2007) and two-stage
method (Tsai et al. 2004) (for nonadhering AF cells). Both of
them after obtaining written consent, AF was centrifuged, the
cell pellets are seeded in special cell culture media such as
DMEM (high glucose DMEM) (Steigman and Fauza 2007) or
M199 (In ‘t Anker et al. 2004, Bossolasco et al. 2006b) or
Iscove’s modified Dulbecco’s medium (IMDM) (Cipriani et al.
2007) or alpha MEM with 20% of Chang medium (Chang B
plus Chang C) this procedure for single-stage method was
continued for 2–3 weeks and twice per week cells medium
was changed (Chiavegato et al. 2007). In two-stage method,
after 5 days of primary amniocytes culture, non-adhering
amniotic fluid cells in the supernatant medium were collected
(first stage), centrifuged, and then plated in special AFSCs
medium (second stage) such as AmnioMAx II complete

Table 1. The biological properties of different stem cells.

Site ESC AFSC Cord blood SC Adipose SC BMSC

Source ICM (Trophoblast) Amniotic fluid Cord blood Adipose tissue Bone marrow
Potency Pluripotent Pluri-Multipotent Multipotent Multipotent Multipotent
Cell content Low Abundant Low Low Low
Ethical topic Yes No No Yes Yes
Proliferation rate High (required to feeder layer) High High Low Low
Immunogenicity Low Low Low High High
Accessibility Hard & invasive Easy & non-invasive Easy & non-invasive Hard & invasive Hard & invasive
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medium. As revealed, two-stage method is more advantages
compared to other methods, these advantages were illus-
trated in our previous study (Gholizadeh-Ghalehaziz et al.
2015).

Differentiation abilities of AFSCs

Many researchers have established the existence Oct4þ/c-
KitþAFSCs cells and have informed their possible to differ-
entiate into hematopoietic, osteogenic, neurogenic, adipo-
genic, chondrogenic, hepatic, renal, and various other
lineages.

Differentiation to adipose tissue

To facilitate stimulation of the c-kit-positive AFSCs to differen-
tiate into adipocyte cells, they are cultured in DMEM low
glucose medium with 1% penicillin/streptomycin, 10% FBS
and a different adipogenic supplement such as 3-isobutyl-1-
methylxanthine, dexamethasone, insulin and indomethacin
(Wolbank et al. 2007).

Differentiation to neural cells

The first verification that amniotic fluid contained cells har-
boring the possible of neurogenic differentiation was pro-
vided in 2004 by Prusa et al (Prusa et al. 2004). Several
evidences signify the existence of more than one stem cell
type in AF. Some authors have publicized that the c-kit-
negative hAFSC population better differentiates into the
neuronal lineage. On the other hand, monoclonal c-Kitþ/
Oct4þAFS cells have been informed to differentiate into
the neurogenic lineage, as established by morphology
changes, specific marker expression, and electro-physio-
logical analysis (De Coppi et al. 2007a, Toselli et al. 2008,
Maraldi et al. 2014).

Differentiation to chondrocyte cells

Kolambkar et al. indicate that AFSCs are capable of generat-
ing a cartilage-like matrix in both hydrogel and pellet cul-
tures. They also found that chondrogenic differentiation of
AFSCs is culture condition dependent and seems to be less
robust than that of bone marrow MSCs in pellet culture at
three weeks with TGF-b1 supplementation (Kolambkar et al.
2007). This study indicates that AFSCs have the ability to dif-
ferentiate along the chondrogenic lineage, thus establishing
the probability of using these cells for cartilage repair
applications.

Differentiation to endothelial cells

In one study, Griffith et al. show the effect of hypoxic culture
on the endothelial differentiation of human amniotic fluid-
derived stem cells and the differentiation potential of AFSCs
to Endothelial cells (Lloyd-Griffith et al. 2015). The 14-day cul-
ture period caused the AFSCs in normoxia, intermittent hyp-
oxia, and continuous hypoxia to adopt a similar, albeit much
less mature, endothelial gene expression profile to human
umbilical vein endothelial cells (HUVECs). This endothelial
expression profile was visible in the form of increased CD31,
VEGFR2, and vWF expression and decreased angiopoietin 1
expression in comparison with AFSCs in growth media.

Characteristics of amniotic fluid/membrane

The membranous sac that contains the fetus and amniotic
fluid is the amnion (De Coppi et al. 2007a). One of the main
role of this compartment during parturition is enhancing the
biosynthesis of prostaglandins (necessary for the initiation
and maintenance of uterine contraction) (Toda et al. 2007).
The fetus can directly supply by diffusion from the amniotic
fluid and underlining decidua (Dobreva et al. 2010).

Figure 1. Potential clinical application of AFSCs.
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The AF includes water, growth factors (GF), fetus urine,
proteins, lactate, electrolytes composition, carbohydrates, lip-
ids, amino acids, pyruvate, hormones, and enzymes
(Underwood et al. 2005). Furthermore, fluid excretions from
the embryo into the AF transfer a multiplicity of embryo cells,
follow-on in a heterogeneous populace of cells derived from
embryo respiratory, gastrointestinal, skin, and urinary tracts,
and the amniotic cover (Parolini et al. 2009). As the fetus
matures, the bulk and opus of the AF conversion extremely,
and the supplement of cells distinguished in AF samples
taken at altered gestational eternities differs significantly
(Calvet et al. 2016). Human AF was made at 2 weeks after
reproduction in the amniotic cavity of primary maturation.
Through gestation, AF is concealed mostly as an outcome of
active passage of Naþ and Cl�, which is supplemented by
the passage of water over the chorio-AM and embryo’s skin,
along with many of protein molecules (Prusa et al. 2004). The
assembly of urine and respiratory fluid both donates to the
bulk of AF. AF is significant to save the fetus, and it cares tis-
sue growth. The human AF has been proposed as a source of
stem cells (Kaviani et al. 2001).

Most of amniotic cells in AF (between the first trimesters
of pregnancy to the middle of the second trimester) are gen-
erated and drive from the fetus (Hoehn and Salk 1982), the
yolk sac, amnion and placenta (Brace 1986). Generally, most
of the AF is composed of fetal urine (Underwood et al. 2005),
fetal respiratory (Duenhoelter and Pritchard 1976) and digest-
ive tracts' cells (Minei and Suzuki 1976). These cells grow rap-
idly in routine culture (Li et al. 2015). Based on their
morphological, biochemical, and growth characteristics of
adherent AF cells, these cells can be classified into three
groups: (1) AF-specific AF-type cells, (2) fibroblastic F-type
cells, and (3) epithelioid E-type cells (Pipino and Pandolfi
2015). Both the AF-specific AF-type cells and the epithelioid
E-type cells are found in the initial passages of cultivation.
The AF-specific AF-type cells are likely derived from placental
trophoblastic tissue and produce estrogen, chorionic gonado-
tropin, and progesterone, but the epithelioid E-type cells
likely derived from the fetal skin (Pipino and Pandolfi 2015).

Characteristics of amniotic fluid stem cell

A wide variety of different cell types has found in AF which
has properties that are mainly derived from fetal tissues
(Gosden 1983). So, different types of stem cells can be
obtained from the amniotic fluid such as amniotic mem-
brane-derived mesenchymal (Jiao et al. 2012, Manuelpillai
et al. 2010), amniotic membrane-derived epithelial
(Manuelpillai et al. 2010, Marongiu et al. 2011), and AF stem
cells.

The human amniotic membrane-derived mesenchymal
stem cells (hAMSCs) are isolated from the amniotic mem-
brane (Da Sacco et al. 2010, Dobreva et al. 2010, Jiao et al.
2012). They are positive for REX1, SOX2, NANOG, NESTIN
(neural stem cell marker), and CF (stem cell factor, a ligand of
c-kit) (Kobayashi et al. 2008, Kim et al. 2007). The hAMSCs
have been shown to differentiate into different cell types
such as chondrogenic, adipogenic, osteogenic, skeletal- and

cardiomyogenic, hepatocyte-like cells, endothelial cells, and
neuroglial cells.

On the other hand, human AF-derived stem cells (hAFSCs)
comprises the developing embryo and during the gestation
period, directly contacts with the amniotic membrane (De
Coppi et al. 2007a, Phermthai et al. 2010). HAFSCs were
scored positive for Oct4 (Prusa et al. 2003), CD73 (SH3/4),
CD90, CD105 (SH2), and CD166, but negative for hematopoi-
etic markers (Scherjon et al. 2003). The fibroblastic F-type
cells are adherent cells and are characterized by rapid prolif-
eration with phenotypes and multilineage differentiation simi-
lar to BMMSCs (Fauza 2004, Prusa and Hengstschlager 2002).

Flow cytometry has been extensively used for characteriza-
tion of the adherent human AF cells expanded in culture.
Human AFSCs can express some markers similar to BMMSCs,
such as human leukocyte antigen class I (not human leuko-
cyte antigen class II) CD166, CD105 (endoglin), CD90, CD73,
CD44 (hyaluronan receptor) and CD29 (Bossolasco et al.
2006a, Roubelakis et al. 2007, Tsai et al. 2004). Because of
owing differentiation into a variety of cell types including
chondrogenic, osteogenic and adipogenic lineages, human
AFSCs are multipotent cells (Bossolasco et al. 2006a, Kim
et al. 2007, Tsai et al. 2004, Sessarego et al., 2008), and are
usually termed human AF mammalian stem cells (hAF-mSCs)
(Bossolasco et al., 2006a, Kim et al., 2007, Tsai et al., 2004,
Sessarego et al., 2008).

Some of the markers that simultaneously express in
hAFSCs (specific markers of human embryonic cells) associ-
ated with pluripotency are (1) stage-specific embryonicanti-
gen-4 (SSEA-4), (2) NANOG protein (responsible for
pluripotency), and (3) Oct4 (an embryonic SC marker) (Prusa
et al. 2003, Pashaiasl et al. 2016, Tsai et al. 2004).

Generally, hAFSCs exhibit, under specific culture condi-
tions, the ability to differentiate into hepatogenic, myogenic
and neuronal cell lineages and express genes characteristic of
ectodermal, mesodermal and endodermal germ layers
(Bossolasco et al., 2006a, De Coppi et al. 2007b, Prusa et al.
2003). HAFSCs, as well as embryonic SCs and cancer cells,
also exhibit a high level of telomerase activity, which protects
theme against senescence by inhibiting the progressive short-
ening of chromosomal telomeres. Compared with BMMSCs,
hAF-MSCs have a great proliferative capacity, which because
of significantly greater telomere length (Sessarego et al.
2008). Owing a proliferative rate in culture greater than adult
MSCs, hAFSCs have a high expansion rate in vitro.

The hAFSCs do not induce teratoma transformation similar
to embryonic SCs or do not undergo a neoplastic transform-
ation in vitro (Sessarego et al. 2008), but they have a marked
high proliferative and differentiation capacity. Because
hAFSCs are not tumorigenic in vivo, so these can be used in
eventual clinical applications for regenerative medicine
because injections of hAF-MSCs into immunodeficient animals
do not induce tumor formation (Sessarego et al. 2008). Using
of AFSCs are free of ethical constraints, and without injury to
the fetus, they can be readily isolated during amniocentesis,
thus shown great promising in treatment of diseases includ-
ing cancer (Bitsika et al. 2011, Li et al. 2015), and other dis-
eases such as kidney (Hauser et al. 2010, Perin et al. 2010),
Neural disorders (Rosser et al. 2007), cardiac disease (Bollini
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et al. 2011a, 2011b), intestinal disorders (Zani et al. 2013),
lung diseases (Joo et al. 2012, Li et al. 2016), or dermal and
embryo disorders (Shaw et al. 2011, Skardal et al. 2012) and
some applications of human amniotic membrane-derived
mesenchymal stem cell (Jiao et al. 2012, Zhang et al. 2011)
and human amniotic membrane-derived epithelial stem cell
(Luo et al. 2011, Manuelpillai et al. 2010, Marongiu et al.
2011) were shown in Table 2.

HAFSCs and cancer

When human amniotic stem cells are cocultured with human
tumor cells, the viability of cancer cells can be decreased by
the presence of human amniotic stem cells expressing cyto-
toxic factors (such as tumor necrosis factor-a, interferon,
transforming growth factor-b or ILs) (Kang et al., 2012a).

Cancer treatment using cell-based therapies has been sup-
ported in recent studies. One of promising cell type for such
therapeutic approach is the mesenchymal stem cells (MSCs)
derived from amniotic fluid that display a distinctive tropism
to solid tumors in vivo, innately modified to express thera-
peutic proteins and can be easily propagated in culture.
Generally, two main approaches are for cell-based cancer
therapy using amniotic stem cells: Non-engineered or engi-
neered stem cells strategies (Kang et al., 2012a).

Nonengineered stem cells strategies

In nonengineered stem cell displacement approaches,
amnion-derived stem cells efficiently goal cancer and inhib-
ited the tumor progression by stating cytotoxic cytokines or
cancer conqueror gene (Kang et al. 2012a). Also, they further-
more have a possible as unique delivery vehicles transporting
remedy genes to the tumor development places in gene-
focused enzyme/prodrug amalgamation therapy. Now, the
cured human AF is broadly used as a biomaterial for clinical
treatment (Grskovic et al. 2011).

However, extracted AFSCs to be used in the cell therapy
essentials to be sensibly preferred to balance usefulness and
care for a specific tumor type. MSCs from AM and AF likely
one of the tumor cell progress suppressor or a novel transfer

vehicle for antitumor outcomes (Lai 2010). They prevent
propagation of cancer cell lines of the hematopoietic and
nonhematopoietic source by promoting cell cycle capture or
prompt C6 glioma apoptosis in vivo over the Bcl-2/caspase
pathways. The two basic stem cells also are proficient of self-
renewal and can produce segregated posterities for organ
progress as well (M�endez-Ferrer et al. 2010). They are deliber-
ated as a probable source for renewing treatment and tissue
spare after disease. They are in an intermediary phase among
pluripotent embryonic stem cells and extraction-limited adult
stem cells (Takahashi et al. 2007).

In the absence of normal autologous cells, multipotent
stem cells including the hAFSCs may be useful as a promising
and secure source of flexible cells for bladder tissue engineer-
ing and regeneration applications (De Coppi et al. 2007a).
Chung and Koh (2013) investigate the role of FGF10 as a lead
induction factor for stem cell differentiation bladder cancer
lines toward urothelial cells. As the aim of directed induce to
differentiation into urothelial cells, hAFSCs were co-cultured
with immortalized bladder cancer lines. Cocultured stem cells
began to express urothelial markers such as uroplakin II, III
and cytokeratin 8. Collectively, this report recommends that
differentiation of human amniotic stem cell into urothelial
cells lineage can stimulate by paracrine FGF10 signaling. So
using of hAFSCs in the presence of FGF10 leads to bladder
regeneration and therapeutic application for bladder trans-
plantation (Chung and Koh 2013).

Scientists detected the expressions of cytokines or tumori-
cidal factors in amniotic-derived stem cells. HAFS cells rapid
both embryonic and adult stem cell markers and can be
prompted to separate into cell forms derived from diverse
germ layers, comprising cells of osteogenic, myogenic, neur-
onal, adipogenic, endothelial, and hepatic lineages (Eberli and
Atala 2006). It has newly been conveyed that hAFS cells can
form duct-like linkages and neuron-like cells, but there is
slight evidence on their influence to wound remedial. Flow
cytometry showed that hAFS cells prompt the embryonic
stem cell markers Oct-4, hTERT, SSEA-1, SSEA-4, and CD117
but not SSEA-3. These cells also prompt mesenchymal stem
cell markers CD29, CD44, CD73, CD90, and CD105, which are
markers of the hematopoietic lineage but are adverse for
CD45(Schiller and D’ippolito, 2014). HAFS cells also express

Table 2. Some examples of the therapeutic potential of amniotic stem cells.

Diseases & References Type of stem cells

Human amniotic fluid-derived stem cell Ovarian cancer (Li et al. 2015)
Bladder cancer (Bitsika et al. 2011)
Acute kidney injury (Hauser et al. 2010)
Acute tubular necrosis (Perin et al. 2010)
Transplantation for neurodegenerative diseases (Rosser et al. 2007)
Myocardial infarction (Bollini et al. 2011a)
Cardiomyogenic differentiation (Bollini et al. 2011b)
Repair of damaged intestine (Zani et al. 2013)
Integrate into murine lung and differentiate into lung specify (Joo et al. 2012)
lung cancer, carrying CXCR4 promoter and DAL-1 on nonsmall-cell lung carcinoma growth (Li et al. 2016)
Wound healing (Skardal et al. 2012)
Prenatal and postnatal therapy (Shaw et al. 2011)

Human amniotic membrane-derived
mesenchymal stem cell

Glioma (Jiao et al. 2012)
CCl4- induced liver cirrhosis (Zhang et al. 2011)

Human amniotic membrane-derived
epithelial stem cell

CCl4-hepatic fibrosis (Manuelpillai et al. 2010)
Retrorsine-induced liver disease (Marongiu et al. 2011)
Hepatocyte-like function in partial hepatectomy (Luo et al. 2011)
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both CD34 and CD133, markers of hematopoietic stem cells,
proposing that hAFS cells have the features of embryonic
stem cells (Spinelli et al. 2013, Zhou et al. 2014). In addition,
hAFS cells revelation little immunogenicity.

Engineered stem cells strategies

In one study scientists (Bitsika et al. 2011), investigate the AF-
MSCs tropism and the potential to deliver interferon beta
(IFNb) to the bladder tumor model (region of neoplasia).
They show the prolonged survival of mice in the presence of
AF-MSC-IFN-b and significant inhibition of tumor growth.
Generally, the results of this study have shown the great
potential of AF-MSCs as anti-cancer vehicles, which specific-
ally target the tumor site. This vehicle has high proliferation
rate and expansion efficiency in culture.

In recent study (Kang et al. 2012b), scientists used
hAFSCs as tools for targeted delivery of therapeutic suicide
genes to breast cancer cells, which produce AF2.CD-TK cells
so as to express two suicide genes encoding herpes sim-
plex virus thymidine kinase (HSV-TK) cytosine deaminase
(CD) and that convert nontoxic prodrugs, mono-phosphoryl-
ate ganciclovir (GCV-MP) and 5-fluorocytosine (5-FC), into
cytotoxic metabolites, triphosphate ganciclovir (GCV-TP) and
5-fluorouracil (5-FU), respectively. Cell viability in vitro assay
has revealed that, AF2.CD-TK cells in the presence of the
GCV or 5-FC prodrugs or a combination of these two
reagents, AF2.CD-TK cells inhibit the growth of MDA-MB-
231 human breast cancer. Collectively, the results of this
study present the AF2.CD-TK cells as excellent vehicles
which can be used as a novel therapeutic cell-based gene-
directed prodrug system to selectively target breast
malignancies.

Studies have been considered the tumorigenic phenotype
of aggressive cancer cells suppression using human embry-
onic stem cell microenvironment. LM Postovit et al (2008)
tested the possibility of cancer cells react to regulatory sig-
nals monitoring the Nodal signaling pathway. Metastatic
tumor cells cannot express the inhibitor to Nodal, Lefty,
which allow overexpressing of this embryonic morphogen in
an unregulated manner. Exposure of the tumor cells to a
hESC microenvironment containing Lefty results in a dramatic
down-regulation in their Nodal expression as well as a reduc-
tion in clonogenicity and tumorigenesis (associated with the
secretion of Lefty, exclusive to hESCs) and an increase in
apoptosis. This tumor-suppressive effects hESC (neutralizing
the expression of Nodal in aggressive tumor cells) introduce
promising therapeutic modalities for cancer treatment.

HESC differentiation can prevent by overexpression of
Nodal, so inhibit of Nodal signaling in metastatic melanoma
cells may decrease colony formation in soft agar and a signifi-
cant tumor formation repeal in an orthotopic mouse model
(Topczewska et al. 2006, Vallier et al. 2007). Accordingly, stud-
ies have been shown embryonic microenvironments can
inhibit the tumorigenicity of a variety of cancer cell lines
(Topczewska et al. 2006, Vallier et al. 2007, Hendrix et al.
2007).

For example, in one study, the embryonic microenviron-
ment of mouse reprogram teratocarcinoma cells to a

nontumorigenic phenotype, which has the possibility of dif-
ferentiating into healthy tissues (Hendrix et al. 2007).
Definitely, even though still present after a 3 months period
of examination, melanoma cells implanted into zebrafish
embryos lay latent and were incapable of forming tumors
(Lee et al. 2005). Amusingly, this experience is unique to the
embryonic zebrafish microenvironment, as human melanoma
cells transplanted into zebrafish 2 days after fertilization
form tumors and even provoke angiogenesis (Haldi et al.
2006).

Suicide genes (effectively converts nontoxic prodrugs into
their highly cytotoxic forms) can be effectively used for can-
cer gene therapies using stem cells. As this aim, stem cells
has been used as suicide gene transfer vehicles for tumors
which known as gene-directed enzyme/prodrug combination
(GEPC) therapy, such as carboxylesterase, cytosine deaminase
(CD) and/or herpes simplex virus thymidine kinase by adeno-
virus, retrovirus or lentivirus (Aghi et al. 1998, Anderson et al.
2000).

Collectively, hAFSC gradually became a hot topic in human
research direction for disease treatment, because of their
reduced immunogenicity, their plasticity, and their tumor
tropism apart from the tumor size, source, and location. Li
et al. (2015) detect high motility of hAFSC to migrate to ovar-
ian cancer site in nude mice model, but did not have the
tumorigenicity. The results of this study enhance the poten-
tial of AFMSCs as a drug carrier in human cell-based therapy
(Figure 2).

Conclusions

Stem cells have capable of self-renewal and can create differ-
entiated progenies for the development of an organ, so have
the therapeutic potential for regenerative medicine and tissue
replacement after injury or disease and for treating human
diseases including cancers (Kang et al. 2012a).

Stem cells derived from human amniotic membrane/fluid
have a high proliferative potential, express Oct4 and NANOG
mRNA (that is specific to pluripotent stem cells) (Prusa et al.
2003) and was scored positive for mesenchymal markers,
such as CD73 (SH3/4), CD105 (SH2), CD90, and CD166, but
negative for hematopoietic markers (Scherjon et al. 2003). AF-
derived stem cells are more advantageous than adult stem
cells and are known for having unique characteristics, such as
nontumorigenic and cause low immunogenicity and anti-
inflammation, can be isolated noninvasively in large scales
without the ethical reservations associated with embryo
research and a less restricted differentiation potential, as well
as they are in an intermediate stage between pluripotent
ESCs and lineage-restricted adult stem cells, expressing the
transcription factor Oct4 and NANOG that has an important
role in maintaining pluripotency and self-renewal (Kang et al.
2012a, Pashaiasl et al. 2016).

Several studies have proved that AF-derived stem cells
suggest a new tool in the stem cell therapy, as they can effi-
ciently target the tumor site and reduce tumor burden
(Bitsika et al. 2011, Li et al. 2015). Natural tumor tropism of
this cells and their low immunogenicity presents AF-derived
stem cells as promising therapeutic tools in cancer gene
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therapy. Collectively, the results of all studies discussed previ-
ously shown that human AF-derived stem cells may present
promising their antitumor effects via tumor tropism and can
be a novel approach to selectively target human cancers. This
result may suitable evidence for forthcoming clinical applica-
tions of hAFS cells. We consider that hAFS cells can expose a
new area of stem cell study and offer a new source of germ
cells in cancer therapy. There are required further studies to
investigate the most precise mechanism by which amniotic
fluid-derived stem cells exert their anticancer effect on cancer
cells.
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